
 

 

 

 

 

 



 

 

 

 

 

 



 

 

 



AN ADELIC EXTENSION OF THE JONES POLYNOMIAL

J. JUYUMAYA AND S. LAMBROPOULOU

Abstract. In this paper we represent the classical braids in the classical and the adelic
Yokonuma–Hecke algebras. More precisely, we define the completion of the framed braid
group and we introduce the adelic Yokonuma–Hecke algebras, in analogy to the notions
of p-adic framed braids and p-adic Yokonuma–Hecke algebras introduced in [3, 4]. We
further construct an adelic Markov trace, analogous to a p-adic Markov trace constructed
in [4]. Using the traces in [2] and the adelic Markov trace we define topological invariants
of classical knots and links, upon imposing some condition (in analogy to the invariants
of framed links defined in [4]). These invariants are related to a cubic skein relation
coming from the Yokonuma–Hecke algebra.

1. Introduction

Let Bn be the classical braid group on n strands. As usual we denote σ1, . . . , σn−1 the
elementary braids which generate Bn under the defining relations:

σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for |i − j| > 1.

From the topological point of view, an element in Bn consists in n arcs embedded in a
thickened square, such that the ends are arranged into n collinear top endpoints and into
n collinear bottom endpoints and such that there are no local maxima or minima. The
braid generator σi is a positive crossing between the ith and the (i + 1)st strand, while
σ−1

i is the opposite crossing. The operation in Bn corresponds to the concatenation of
two braids and the braid relations reflect allowed topological moves.

Closing a braid β means to join with simple arcs the corresponding top and bottom

endpoints of β, and it gives rise to an oriented knot or link, denoted β̂. Conversely, by
the classical Alexander theorem, an oriented knot or link can be isotoped to the closure
of a braid. Isotopy is the notion of topological equivalence for knots and links. Further,
by the classical Markov theorem, isotopy classes of oriented knots or links are in bijective
correspondence with equivalence classes of braids. More precisely, the natural inclusions
Bn ⊂ Bn+1, induced by adding at the end of the braid an extra identity strand, give rise
to the direct limit B∞. Then we have the following classical result.

Theorem 1 (Markov, 1935). Isotopy classes of oriented links are in bijection with equiv-
alence classes of braids in B∞, where the equivalence relation is generated by the two
moves:
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2 J. JUYUMAYA AND S. LAMBROPOULOU

(i) Conjugation: αβ ∼ βα, α, β ∈ Bn

(ii) Markov move: α ∼ ασn
±1, α ∈ Bn

Using the theory of braids and Ocneanu’s Markov trace on the Iwahori–Hecke algebras
of type A (see [1]), V.F.R. Jones constructed in [1] the 2-variable Jones polynomial, an
isotopy invariant of oriented classical knots and links. The Iwahori–Hecke algebras of type
A can be described naturally as quotients of the group algebras CBn over a quadratic
relation.

The Yokonuma–Hecke algebras Yd,n(u) are similar algebraic objects and have a natural
topological interpretation as quotients of the modular framed braid group algebras CFd,n

(classical framed braids with framings modulo d) over certain quadratic relations. d is
any non–negative integer, and if d = 1 then the algebra Y1,n(u) is isomorphic to the
above-mentioned Iwahori–Hecke algebra. Topologically, d = 1 means all framings zero, so
Y1,n(u) is really related to classical braids (with no framings). In [2] Markov traces are
constructed on the Yokonuma–Hecke algebras. For d = 1 this trace coincides with the
Ocneanu trace.

In [3] we introduced the p-adic framed braids and the p-adic Yokonuma–Hecke algebras.
Further, in [4] we constructed a p-adic Markov trace, which we used, together with the
traces in [2], in order to construct an infinite family of topological invariants of framed
links, upon imposing some condition. In the present paper we relate the Yokonuma–Hecke
algebras, for d �= 0, to classical knots and links via a homomorphism of the classical braid
group Bn. Further, using the Markov traces in [2] we construct an infinite family of
isotopy invariants of classical knots and links, upon imposing some condition. We further
define the completion of the framed braid group and we introduce the adelic Yokonuma–
Hecke algebras, into which the classical braid group also maps homomorphically. We also
construct, in analogy to [4], an adelic Markov trace, which we use for constructing an
isotopy invariant of classical knots and links, the adelic extension of the 2–variable Jones
polynomial. Our invariants satisfy a cubic skein relation coming from the Yokonuma–
Hecke algebras. In an effort to keep this paper light we omit some technical details, which
are mostly to be found in [4].

The Yokonuma–Hecke algebras are very versatile algebraic objects, in the sense that
they can be used for completely different topological interpretations. They comprise the
only examples we know of having this property. Indeed, apart from the framed braids
and the classical braids, they are also related to singular braids, as there is a monoid
representation of the singular braid monoid algebra to Yd,n(u) (not onto). Then the
traces in [2] are also Markov traces on the singular braid monoid. See [5] for details.

2. An adelic representation of the braid group

2.1. The Yokonuma–Hecke algebra. Fix u ∈ C\{0, 1}. Given two positive integers d and
n, we denote Yd,n = Yd,n(u) the Yokonuma–Hecke algebra, which is a unital associative
algebra over C, defined by the generators:

1, g1, . . . , gn−1, t1, . . . , tn
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subject to the following relations:

(1)

gigj = gjgi for |i − j| > 1
gigjgi = gjgigj for |i − j| = 1

titj = tjti for all i, j
tjgi = gitsi(j) for all i, j

tdj = 1 for all j

where si(j) is the result of applying the transposition si = (i, i + 1) to j, together with
the extra quadratic relations:

(2) g2
i = 1 + (u − 1) ed,i − (u − 1) ed,i gi for all i

where

(3) ed,i :=
1

d

d−1∑
m=0

tmi t−m
i+1.

Remark 1. For all 1 ≤ i ≤ n, let Cd,i = {1, ti, t2i , . . . , td−1
i } denote the cyclic group

containing all possible framings of the ith strand of a modular framed braid. Notice that
Cd,i � Z/dZ for all i. We define also the group H := Cd,1 × Cd,2 × . . . × Cd,n � (Z/dZ)n.
From the defining relations among the ti’s we deduce that the groups Cd,i and H can be
regarded inside Yd,n.

The Yokonuma–Hecke algebra Yd,n is a quotient of the modular framed braid group
algebra CFd,n over the quadratic relations (2). The modular framed braid group Fd,n is
generated by the braiding generators σi and the framing generators t1, . . . , tn, where tj
means the identity braid with framing one on the jth strand and framing zero on the other
strands. Corresponding the braiding generators σi to the algebra generators gi, relations
(1) furnish a presentation for Fd,n. Elements of Fd,n are classical framed braids, but with
framings modulo d. The elements ed,i are in the algebra CFd,n as well as in the quotient
algebra Yd,n. They are expressions of the framing generators ti, ti+1 and it is easy to check
that they are idempotents.

The Yokonuma–Hecke algebra was originally introduced by T. Yokonuma [9].

2.2. The adelic Yokonuma–Hecke algebra. Let us denote by N the set of positive integers
regarded as a directed set with the usual order. We shall denote by N∼ the directed set
of positive integers regarded with respect to the partial order defined by the divisibility
relation. The notation d|d′ means d divides d′.

For d, d′ ∈ N with d|d′ we consider the natural connecting ring homomorphism ρd′
d ,

defined in [4], (1.17):

(4) ρd′
d : Yd′,n −→ Yd,n

More precisely, we denote ϑd′
d the natural epimorphism:

(5)
ϑd′

d : Z/d′Z −→ Z/dZ

m 	→ m (mod d)
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The inverse limit Ẑ of the inverse system of groups (Z/dZ, ϑd′
d ) indexed by N∼ is called

the completion of Z:

Ẑ = lim←−
d∈N∼

Z/dZ

Our references for inverse limits are mainly [7] and [8].

By componentwise multiplication, epimorphism (5) defines the epimorphism:

(6) �d′
d : (Z/d′Z)n −→ (Z/dZ)n

Extension to the Bn–part by the identity map yields the epimorphism:

(7) �d′
d · id : Fd′,n −→ Fd,n

Definition 1. The completion F∞,n of the framed braid group Fn is defined as the inverse
limit of the inverse system of groups (Fd,n, �d′

d · id):

F∞,n := lim←−
d∈N∼

Fd,n

The linear extension of map (7) yields an algebra epimorphism:

(8) �d′
d : CFd′,n −→ CFd,n

Remark 2. The braid group Bn acts on Ẑn by permuting the factors, so we may consider

the group Ẑn � Bn. It is easy to construct an isomorphism between the groups Ẑn � Bn

and F∞,n (proof analogous to Theorem 1 in [3]). We note, though, that this isomorphism

does not carry through on the level of the algebras C(Ẑn � Bn) and lim←−d∈N∼ CFd,n (see

[4] for more details).

Passing now to the quotient algebras by relations (2) we obtain the following algebra
epimorphism:

(9) ρd′
d : Yd′,n −→ Yd,n

Definition 2. The adelic Yokonuma–Hecke algebra Y∞,n(u) = Y∞,n is defined as the
inverse limit of the inverse system of rings (Yd,n, ρ

d′
d ) indexed by N∼:

Y∞,n = lim←−
d∈N∼

Yd,n

Hence, elements in Y∞,n are infinite sequences of elements in the algebras Yd,n, for
d ∈ N∼, which are coherent in the sense of maps (5) – (9). Moreover, the definition of
the connecting maps ρd′

d do not involve the elements gi, so we shall denote also by gi the
elements in Y∞,n corresponding to the infinite constant sequence (gi).

For all 0 ≤ i ≤ n − 1, define now the groups Hd,i as follows:

Hd,i = {1, tit−1
i+1, t

2
i t

−2
i+1, . . . , t

d−1
i ti+1}

Then, the element ed,i is the average of the elements of the group Hd,i:

ed,i =
1

d

∑
x∈Hd,i

x

Then ρd′
d (Hd′,i) = Hd,i for all d|d′. Hence, we deduce the following result.
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Lemma 1. For all i and for d, d′ such that d|d′, we have:

ρd′
d (ed′,i) = ed,i.

We shall denote by ei the sequence (ed,i)d∈N∼ in Y∞,n :

(10) ei = (ed,i)d∈N∼

Proposition 1. For all i the following relations hold in Y∞,n:

(1) eigi = giei

(2) g2
i = 1 + (u − 1)eigi − (u − 1)gi.

2.3. Representing the braid group. The defining relations of Yd,n imply that the map:

(11)
	d,n : Bn −→ Yd,n

σi 	→ gi

defines a representation of Bn in Yd,n. Under this representation the generators gi of the
algebra Yd,n correspond to the braid crossings σi. The generators tj, though, loose their
topological interpretation as framing generators and they are just considered algebraically.

Further, for all d, d′, d′′ such that d|d′ and d′|d′′ we have the following commutative
diagram:

(12)

· · · Bn Bn Bn · · ·

· · · Yd,n Yd′,n Yd′′,n · · ·

�

�

�d,n

� Id

�

�d′,n

� Id

�

�d′′,n

�

� �
ρd′

d �
ρd′′

d′ �

By taking inverse limits in the above diagram we obtain the following representation
of the classical braid group in the adelic Yokonuma–Hecke algebra:

(13) 	∞,n : Bn −→ Y∞,n

where:

	∞,n := lim←−
d∈N∼

	d,n

3. An adelic Markov trace

3.1. A modular Markov trace. It is known that the Yokonuma–Hecke algebra supports a
Markov trace [2]. More precisely, for fixed d we consider the inductive system (Yd,n)n∈N

associated to the natural inclusion Yd,n ⊂ Yd,n+1, for all n ∈ N. Let Yd,∞ be the corre-
sponding inductive limit. In [2] the following theorem is proved.

Theorem 2 (Juyumaya, 2004). Let z, x1, . . ., xd−1 ∈ C and let d be a positive integer.
For all n ∈ N there exists a unique linear map trd = (trd,n)n∈N

:

trd : Yd,∞ −→ C
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satisfying the rules:

trd,n(ab) = trd,n(ba)
trd,n(1) = 1

trd,n+1(agn) = z trd,n(a) (a ∈ Yd,n)
trd,n+1(atmn+1) = xmtrd,n(a) (a ∈ Yd,n , 1 ≤ m ≤ d − 1).

The proof of Theorem 2 rests on the fact that the algebra Yd,n+1 admits an inductive
linear basis, where either gn or tmn+1 appears at most once. Note that, for d = 1 the trace
restricts to the first three rules and it coincides with Ocneanu’s trace on the Iwahori–Hecke
algebra, which was used in [1] to construct the 2–variable Jones polynomial for classical
knots and links.

3.2. Let R be the polynomial ring C[z] and let R[Xd] be the polynomial ring with
coefficients in R and variables xa, where a ∈ Z/dZ. Let also d|d′. The natural map
xa 	→ xb where b := ϑd′

d (a) (recall (5)), defines a ring epimorphism:

(14) ξd′
d : R [Xd′ ] −→ R [Xd]

We now have the following result (compare with Lemma 7[4]).

Lemma 2. The family
(
R[Xd], ξ

d′
d

)
indexed by N∼, is an inverse system.

We shall then consider the inverse limit:

lim←−
d∈N∼

R[Xd]

Notice that lim←−d∈N∼ R[Xd] can be regarded as the polynomial ring over C in the variables

z and xα, where α ∈ Ẑ. The ring lim←−d∈N∼ R[Xd] turns out to be an integral domain.

Now, for all n ∈ N and for all d, d′, d′′ such that d|d′ and d′|d′′, we have the following
commutative diagram (compare with Lemma 6[4]):

(15)

· · · Yd,n Yd′,n Yd′′,n · · ·

· · · R [Xd] R [Xd′ ] R [Xd′′ ] · · ·

�

�

trd,n

�
ρd′

d

�

trd′,n

�
ρd′′

d′

�

trd′′,n

�

� �
ξd′
d �

ξd′′
d′ �

Finally, we note that there are natural inclusions Y∞,n ⊂ Y∞,n+1, for all n ∈ N. Let

Y∞ := lim−→
n∈N

Y∞,n

the associated inductive limit. We then have the following.

Theorem 3. There exists a unique linear Markov trace tr∞ = (tr∞,n)n∈N
,

tr∞ : Y∞ −→ lim←−
d∈N∼

R[Xd]
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such that

tr∞,n(ab) = tr∞,n(ba)
tr∞,n(1) = 1

tr∞,n+1(agn) = z tr∞,n(a)
tr∞,n+1(ayn+1) = tr∞,n(a)tr∞,n+1(y)

where a, b ∈ Y∞,n and yn+1 is the element in Ẑn+1 with y ∈ Ẑ in the position n + 1 and
0 otherwise, that is: yn+1 = (0, . . . , 0, y).

Proof. It follows immediately from the commutative diagram (15) and from the existence
and uniqueness of the traces trd. �

4. The E–condition

4.1. The representations (11) and (13) of the braid group through the classical and
the adelic Yokonuma–Hecke algebras, composed with the Markov traces trd and tr∞ of
Theorems 2 and 3, map braids to complex polynomials. In view of the Alexander and
Markov topological theorems we would like to construct isotopy invariants for classical
oriented knots and links. According to Theorem 1, such an invariant has to agree on the

links α̂, α̂σn and α̂σ−1
n , for any α ∈ Bn. Following Jones’ construction of the 2-variable

Jones polynomial for classical knots [1], we will try to define knot isotopy invariants by
re-scaling and normalizing the traces trd and the adelic trace tr∞. By the equation:

(16) g−1
i = gi − (u−1 − 1) ed,i + (u−1 − 1) ed,i gi

we have:

(17) trd(αg−1
n ) = trd(αgn) − (u−1 − 1)trd(αed,n) + (u−1 − 1)trd(αed,ngn).

In order that the invariant agrees on the closures of the braids ασn
−1 and ασn we need

that trd(αg−1
n ) factorizes through trd(α), just as trd(αgn) does. Indeed, for the first term

we have: trd(αgn) = z trd(α). Further:

(18) trd(αed,ngn) =
1

d

d−1∑
m=0

trd(αtmn t−m
n+1gn) =

1

d

d−1∑
m=0

z trd(α) = z trd(α)

since trd(αtmn t−m
n+1gn) = trd(αtmn gnt

−m
n ) = z trd(αtmn t−m

n ) = z trd(α). So, we need that
trd(αed,n) also factorizes through trd(α). Unfortunately, we do not have, in general, such
a nice formula for trd(αed,n). The underlying reason on the framed braid level (which is
the natural interpretation for elements in Yd,n(u)) is that ed,n involves the nth strand of
the braid α. Yet, by imposing some conditions on the indeterminates xi of the trace trd

it is possible to have this factorization.

4.2. The E–system. Set Xd = {x0, x1, . . . , xd−1} a set of d complex numbers. We shall
say that Xd satisfies the E–condition if the xi’s are solutions of the following non–linear
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system of equations:

(19)

E
(1)
d = x1E

(0)
d

E
(2)
d = x2E

(0)
d

...

E
(d−1)
d = xd−1E

(0)
d

where E
(m)
d is the polynomial in variables x1, . . . , xd−1 defined as:

(20) E
(m)
d =

d−1∑
s=0

xm+sxd−s

where, by definition, x0 = xd = 1, and the sub-indices are regarded modulo d. We shall
refer to the system above as the (E, d)–system or simply the E–system. For example, in
the case d = 3 we have the E–system:

x1 + x2
2 = 2x2

1x2

x2
1 + x2 = 2x1x

2
2

We then have the following result (compare with Theorem 6 in [4]).

Theorem 4. If Xd,S is a solution of the E–system then for all α ∈ Yd,n we have:

trd(αed,n) = trd(α) trd(ed,n).

For the proof of Theorem 4 we need to consider all different cases for α being an element
in the inductive basis of Yd,n(u). See [4] for details.

We still need to establish, of course, that the set of solutions of the E–system is non–
empty. For a ∈ Z/dZ we denote expa the exponential character of the group Z/dZ, that
is:

expa(k) := cos
2πak

d
+ i sin

2πak

d
(k ∈ Z/dZ).

Theorem 5. The solutions of system (19) above are parametrized by the non–empty sub-
sets S of Z/dZ. More precisely, a subset S defines the solution Xd,S = {x0, x1, . . . , xd−1},
where:

xk =
1

|S|
∑
s∈S

exps(k) (0 ≤ k ≤ d − 1).

Proof. See Appendix in [4]. �

Let Xd,S be a solution of the E–system. A direct computation yields that the value of
the trd on ed,i (with respect to Xd,S) is:

(21) trd (ed,i) =
1

|S| (1 ≤ i ≤ n − 1).

For a thorough discussion and full proofs related to the E–condition and the E–system
we refer the reader to [4].



AN ADELIC EXTENSION OF THE JONES POLYNOMIAL 9

4.3. For d|d′ we denote sd
d′ a section map of the natural epimorphism ϑd′

d of (5). By
taking a section sd

d′ any solution of the (E, d)–system can be lifted trivially to a solution
of the (E, d′)–system. Indeed: If Xd,S is a solution of the (E, d)–system, then Xd′,S′ is
a solution of the (E, d′)–system, where S ′ := sd

d′(S). A more interesting lifting can be
constructed as follows. Define Sd

d′ = {sd
d′(a) + b ; a ∈ S, b ∈ ker ϑd′

d }. Then we define the
lifting Xd,d′,S of Xd,S as:

(22) Xd,d′,S := Xd′,Sd
d′

(S ⊆ Z/dZ)

Notice that |Xd,d′,S| = |S|d′/d and Xd,d,S = Xd,S.

Lemma 3. For d|d′|d′′ and S non–empty subset of Z/dZ we have:

Xd,d′′,S = Xd′,d′′,S′

where S ′ := Sdd′ .

Proof. According to the definition of XS,d it is enough to prove that:(
Sd

d′
)d′

d′′ = Sd
d′

Now the elements in
(
Sd

d′
)d′

d′′ are in the form z := sd′
d′′(x)+y, where x ∈ Sd

d′ and y ∈ ker ϑd′′
d′ .

The element x is in the form x = sd
d′(μ) + ν, where μ ∈ S and ν ∈ ker ϑd′

d . So we can
re–write z as:

z = sd′
d′′

(
sd
d′(μ) + ν

)
+ y = sd′

d′′
(
sd
d′(μ)

)
+ sd′

d′′ (ν) + y = sd
d′′ (μ) + sd′

d′′ (ν) + y

But sd′
d′′ (ν) + y belong to the ker ϑd′′

d ; hence z ∈ Sd
d′ . Thus

(
Sd

d′
)d′

d′′ = Sd
d′ . �

We showed that solutions of the E–system lift to solutions on the adelic level.

5. An adelic extension of the Jones polynomial

5.1. Isotopy invariants from trd. Given a solution Xd,S of the E–system, Eq. 17 can be
rewritten as follows, using Theorem 4:

(23) trd(αg−1
n ) =

z + (u − 1)ζd,S

u
trd(α)

where, for all i:

ζd,S := trd(ed,i) =
1

|S| .
Let now L be the set of oriented links in S3. Recall that by Alexander’s theorem every

link type may be represented by a closed braid. For the solution Xd,S of the E–system

we wish to define a link isotopy invariant Δd,S. In order that Δd,S(α̂σn) = Δd,S(α̂σ−1
n ),

for α ∈ Bn, we apply a re-scaling via the homomorphism:

(24)
δ : Bn −→ Yd,n

σi 	→ √
λgi

where:

λ :=
z − (1 − u)ζd,S

uz
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Finally, in order that Δd,S(α̂σn) = Δd,S(α̂) we need to do a normalization. So, we define
the following map on the set L.

Definition 3. Let α ∈ Bn. We define the map Δd,S on the closure α̂ of α as follows:

Δd,S(α̂) :=

(
1 − λu√

λ(1 − u)ζd,S

)n−1

(trd ◦ δ) (α)

Equivalently, setting

D :=
1 − λu√

λ(1 − u)ζd,S

we can write:
Δd,S(α̂) = Dn−1(

√
λ)ε(α)trd(	d,n(α))

where ε(α) is the algebraic sum of the exponents of the σi’s in the braid word α and where
	d,n was defined in (11).

Theorem 6. For the solution Xd,S of the E–system, Δd,S is a 2–variable isotopy invariant
for oriented links, depending on the variables u, z.

Proof. We need to show that Δd,S is well–defined on isotopy classes of oriented links.
According to Theorem 1, it suffices to prove that Δd,S is consistent with moves (i) and
(ii). From the facts that ε(αα′) = ε(α′α) and trd(ab) = trd(ba), it follows that Δd,S

respects move (i). Let now α ∈ Bn. Then ασn ∈ Bn+1 and ε(ασn) = ε(α) + 1. Hence:

Δd,S(α̂σn) = Dn(
√

λ)ε(ασn) trd(	d,n(ασn)) = Dn(
√

λ)ε(α)+1 trd(	d,n(α)gn) = D
√

λ z Δd,S(α̂)

where we used that trd(	d,n(α)gn) = z tr(	d,n(α)). Now:

z =
(1 − u)ζd,S

1 − λu
,

so:
D
√

λ z = 1.

Therefore, Δd,S(α̂σn) = Δd,S(α̂). Finally, we will prove that Δd,S(α̂σ−1
n ) = Δd,S(α̂).

Indeed:

Δd,S(α̂σ−1
n ) = Dn(

√
λ)ε(ασ−1

n )trd(	d,n(ασ−1
n )) = Dn(

√
λ)ε(α)−1 trd(	d,n(α)g−1

n ).

Resolving g−1
n from Eq. 16 we obtain:

Δd,S(α̂σ−1
n ) = Dn(

√
λ)ε(α)−1

[
z − (u−1 − 1)ζd,S + (u−1 − 1)z

]
trd(	d,n(α)).

Also, from Theorem 4 and Eq. 18 we have:

trd(	d,n(αed,n)) = ζd,S trd(	d,n(α)) and trd(	d,n(α)ed,ngn) = z trd(	d,n(α)).

Therefore:

Δd,S(α̂σ−1
n ) = Dn(

√
λ)ε(α)−1 z + (u − 1)ζd,S

u
trd(	d,n(α)) =

D√
λ

z + (u − 1)ζd,S

u
Δd,S(α̂) =

Δd,S(α̂). Hence the proof is concluded. �
We have defined an infinite family of 2–variable isotopy invariants for oriented classical

links.
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5.2. Computations. We shall first give some formulas that are useful for computations.
For powers of gi we can deduce by induction the following formulae.

Lemma 4. Let m ∈ Z, k ∈ N. (i) For m positive, define αm = (u−1)
∑k−1

l=0 u2l if m = 2k

and βm = u(u − 1)
∑k−1

l=0 u2l if m = 2k + 1. Then:

gm
i =

{
1 + αm ed,i − αm ed,i gi if m = 2k
gi − βm ed,i + βm ed,igi if m = 2k + 1

(ii) For m negative, define α′
m = u−1(u−1 − 1)

∑k−1
l=0 u−2l if m = −2k and β′

m = (u−1 −
1)

∑k−1
l=0 u−2l if m = −2k + 1. Then:

gm
i =

{
1 + α′

m ed,i − α′
m ed,i gi if m = −2k

gi − β′
m ed,i + β′

m ed,igi if m = −2k + 1

We now proceed with some basic computations. Clearly, for the unknot O, Δd,S(O) = 1.
For the Hopf link and Trefoil Knots we have:

• Let H = σ̂2
1, the Hopf link. We find trd(g

2
1) = 1 + (u + 1)(ζd,S − z) and ε(σ2

1) = 2. Then:

Δd,S(H) =
1 − λu

(1 − u)ζd,S

√
λ (1 + (u + 1)(ζd,S − z)) = z−1

√
λ (1 + (u + 1)(ζd,S − z)) .

• Let T = σ̂3
1, the right-handed trefoil. From Lemma 4 we have g3

1 = g1 − u(u − 1)ed,1 +
u(u− 1)ed,1g1. Hence: trd(g

3
1) = z − u(u− 1)ζd,S + u(u− 1)z. Moreover ε(σ3

1) = 3. Then,
using that 1 − λu = z−1ζd,S(1 − u), we obtain:

Δd,S(T) = D(
√

λ)3 [(u(u − 1) + 1)z − u(u − 1)ζd,S]

=
λ

z

[
(u2 − u + 1)z − (u2 − u)ζd,S

]
.

• Let, finally, −T = σ̂−3
1 , the left-handed trefoil. From Lemma 4 we have g−3

1 = g1 −
(u−1 − 1)(u−2 + 1)ed,1 + (u−1 − 1)(u−2 + 1)ed,1g1. Hence: trd(g

−3
1 ) = z − (u−1 − 1)(u−2 +

1)ζd,S + (u−1 − 1)(u−2 + 1)z. Moreover ε(σ−3
1 ) = −3. Then we obtain:

Δd,S(−T) = D(
√

λ)−3
[
(u−3 − u−2 + u−1)z − (u−3 − u−2 + u−1 − 1)ζd,S

]
,

where we recall that D = 1−λu√
λ(1−u)ζd,S

.

5.3. A cubic skein relation for Δd,S. Let L+, L−, L0 be diagrams of oriented links, which
are all identical, except near one crossing, where they differ by the ways indicated in
Figure 1. We shall try to establish a skein relation satisfied by the invariant Δd,S. Indeed,

by the Alexander theorem we may assume that L+ is in braided form and that L+ = β̂σi

for some β ∈ Bn. Also that L− = β̂σ−1
i and that L0 = β̂. Apply now relation (16) for the
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g−1
i in the expression below, noting that ε(βσ−1

i ) = ε(β) − 1 and ε(βσi) = ε(β) + 1:

Δd,S(L−) = Dn−1(
√

λ)ε(βσ−1
i )trd(	d,n(β)g−1

i )

= Dn−1(
√

λ)ε(β)−1
[
trd(	d,n(β)gi) − (u−1 − 1) trd(	d,n(β)ed,i)

+(u−1 − 1) trd(	d,n(β)ed,i gi)
]

=
1

λ
Δd,S(L+) − Dn−1(

√
λ)ε(β)−1(u−1 − 1) trd(	d,n(β)ed,i)

+Dn−1(
√

λ)ε(β)−1(u−1 − 1) trd(	d,n(β)ed,i gi).

The problem is that the algebra words 	d,n(β)ed,i and 	d,n(β)ed,i gi do not have a natural
lifting in the braid groups, even if we break the ed,i’s according to (3). This was not
the case in [4], where we were dealing with framed braids and all algebra generators had
natural liftings in the framed braid groups.

Yet, we have in the algebra Yd,n the following ‘closed’ relation.

Lemma 5. The generators gi of the Yokonuma–Hecke algebra Yd,n satisfy the cubic rela-
tion:

(25) g3
i = −ug2

i + gi + u

Equivalently,

(26) g−1
i = u−1g2

i + gi − u−1

Proof. From Lemma 4 we find the relation g3
i = gi+(u−1)ed,igi−(u−1)ed,ig

2
i . Substituting

(2) and replacing the expression (u − 1)ed,i − (u − 1)ed,igi by the expression g2
i − 1 we

arrive at the stated cubic relation. �
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L++ L+ L0 L−

Figure 1. L++, L+, L0 and L−

We then have the following result.

Proposition 2. The invariant Δd,S satisfies the following cubic skein relation:

(27)
√

λ Δd,S(L−) =
1

λu
Δd,S(L++) +

1√
λ

Δd,S(L+) − 1

u
Δd,S(L0).

Proof. By the same reasoning as above we may assume that L0 = β̂ for some β ∈ Bn. Also

that L+ = β̂σi, L++ = β̂σ2
i and L− = β̂σ−1

i . Apply now relation (26) from Lemma 5 in the
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expression below, noting that ε(βσ−1
i ) = ε(β)−1, ε(βσi) = ε(β)+1 and ε(βσ2

i ) = ε(β)+2.

Δd,S(L−) = Dn−1(
√

λ)ε(βσ−1
i )trd(	d,n(β)g−1

i )

= Dn−1(
√

λ)ε(β)−1
[
u−1 trd(	d,n(β)g2

i ) + trd(	d,n(β)gi) − u−1 trd(	d,n(β))
]

=
1

(
√

λ)3u
Δd,S(L++) +

1

λ
Δd,S(L+) − 1√

λu
Δd,S(L0).

�

5.4. An isotopy invariant from tr∞. In this subsection we extend the values of the invari-
ants Δd,S to the adelic context. By (13) the braid group Bn is represented in Y∞,n =
lim←−d∈N∼ Yd,n via the map 	∞,n = lim←−d∈N∼ 	d,n. Further, by Theorem 3, elements in

Y∞,n map, via the Markov trace tr∞,n = lim←−d∈N∼ trd,n, in the ring lim←−d∈N∼ R[Xd], where

R = C[z].
For any d|d′, now, the connecting ring epimorphism ξd′

d (recall (14)) yields a connecting
epimorphism Ξd′

d from the ring of rational functions C(z,Xd′) to the ring of rational
functions C(z,Xd).

Lemma 6. The following diagram is commutative.

(28)

L C (z,Xd′)

L C (z,Xd)

�
Δd′,S

�

Id

�

Ξd′
d

�
Δd,S

We shall further denote by R∞ the field of fractions of lim←−d∈N∼ R[Xd]. Taking now

inverse limits in the diagram of Lemma 6 we obtain the map Δ∞,S := lim←−d∈N∼ Δd,S and

we have the following.

Theorem 7. If for all d the set Xd satisfies the E–condition, then the map

Δ∞,S : L −→ R∞
α̂ 	→ (Δd,S(α̂), Δd′,S(α̂), . . .)

for any α ∈ B∞ is an isotopy invariant of oriented links in S3. Moreover:

Δ∞,S(α̂) =

(
1 − λu√

λ(1 − u)ζd,S

)n−1

(
√

λ)ε(α)tr∞(	∞,n(α)) = Dn−1(
√

λ)ε(α)tr∞(	∞,n(α)).

Proof. By Lemma 3 we have non-trivial solutions of the E–system in the adelic context.
Let now β, α ∈ B∞ be Markov equivalent braids. Then, any isotopy invariants agrees

on the closures β̂ and α̂. So, Δd,S(β̂) = Δd,S(α̂), Δd′,S(β̂) = Δd′,S(α̂), etc. Hence:

Δ∞,S(α̂) = Δ∞,S(β̂). Moreover, we have:
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Δ∞,S(α̂) = (Δd,S(α̂), Δd′,S(α̂), . . .)

= (Dn−1(
√

λ)ε(α)trd(	d,n(α)), Dn−1(
√

λ)ε(α)trd′(	d′,n(α)), . . .)

= Dn−1(
√

λ)ε(α)(trd(	d,n(α)), trd′(	d′,n(α)), . . .)

= Dn−1(
√

λ)ε(α)tr∞(	∞,n(α)).

�
The link invariant Δ∞,S is an adelic extension of the Jones polynomial.
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